2,543 research outputs found

    Assembly and use of new task rules in fronto-parietal cortex

    Get PDF
    Severe capacity limits, closely associated with fluid intelligence, arise in learning and use of new task rules. We used fMRI to investigate these limits in a series of multirule tasks involving different stimuli, rules, and response keys. Data were analyzed both during presentation of instructions and during later task execution. Between tasks, we manipulated the number of rules specified in task instructions, and within tasks, we manipulated the number of rules operative in each trial block. Replicating previous results, rule failures were strongly predicted by fluid intelligence and increased with the number of operative rules. In fMRI data, analyses of the instruction period showed that the bilateral inferior frontal sulcus, intraparietal sulcus, and presupplementary motor area were phasically active with presentation of each new rule. In a broader range of frontal and parietal regions, baseline activity gradually increased as successive rules were instructed. During task performance, we observed contrasting fronto-parietal patterns of sustained (block-related) and transient (trial-related) activity. Block, but not trial, activity showed effects of task complexity. We suggest that, as a new task is learned, a fronto-parietal representation of relevant rules and facts is assembled for future control of behavior. Capacity limits in learning and executing new rules, and their association with fluid intelligence, may be mediated by this load-sensitive fronto-parietal network

    DISORDERS OF OCULAR MOVEMENT IN A CASE OF SIMULTANAGNOSIA

    Full text link

    All talk and no action: a transcranial magnetic stimulation study of motor cortex activation during action word production

    Get PDF
    A number of researchers have proposed that the premotor and motor areas are critical for the representation of words that refer to actions, but not objects. Recent evidence against this hypothesis indicates that the left premotor cortex is more sensitive to grammatical differences than to conceptual differences between words. However, it may still be the case that other anterior motor regions are engaged in processing a word's sensorimotor features. In the present study, we used single- and paired-pulse transcranial magnetic stimulation to test the hypothesis that left primary motor cortex is activated during the retrieval of words (nouns and verbs) associated with specific actions. We found that activation in the motor cortex increased for action words compared with non-action words, but was not sensitive to the grammatical category of the word being produced. These results complement previous findings and support the notion that producing a word activates some brain regions relevant to the sensorimotor properties associated with that word regardless of its grammatical category

    Keeping the Metaphor of Scaffolding Fresh—-A Response to C. Addison Stone's “The Metaphor of Scaffolding

    Full text link
    This author suggests three responses to Professor Stone's call for enriching the scaffolding metaphor: (a) repositioning the metaphor in its theoretical frame; (b) considering the ways in which contexts and activities, as well as individuals, scaffold learning; and (c) examining the relationship between scaffolding and effective teaching. The author describes research that has been conducted toward these ends.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68637/2/10.1177_002221949803100406.pd

    The investigation of YAlO3-NdAlO3 system, synthesis and characterization

    Full text link
    The binary phase diagram of the YAlO3 (YAP) - NdAlO3 (NAP) system was determined by differential thermal analysis (DTA) and X-ray powder diffraction (XRD) measurements. High purity nanocrystalline powders and small single crystals of Y_{1-x}Nd_{x}AlO_3 (0 \leq x \leq 1) have been produced successfully by modified sol-gel (Pechini) and micro-pulling-down methods, respectively. Both end members show high mutual solubility >25% in the solid phase, with a miscibility gap for intermediate compositions. A solid solution with x \approx 0.2 melts azeotropic ca. 20 degrees below pure YAP. Such crystals can be grown from the melt without segregation. The narrow solid/liquid region near the azeotrope point could be measured with a "cycling" DTA measurement technique.Comment: 12 pages, 8 figures, submitted to J. Alloys. Comp

    Cytosine-to-Uracil Deamination by SssI DNA Methyltransferase

    Get PDF
    The prokaryotic DNA(cytosine-5)methyltransferase M.SssI shares the specificity of eukaryotic DNA methyltransferases (CG) and is an important model and experimental tool in the study of eukaryotic DNA methylation. Previously, M.SssI was shown to be able to catalyze deamination of the target cytosine to uracil if the methyl donor S-adenosyl-methionine (SAM) was missing from the reaction. To test whether this side-activity of the enzyme can be used to distinguish between unmethylated and C5-methylated cytosines in CG dinucleotides, we re-investigated, using a sensitive genetic reversion assay, the cytosine deaminase activity of M.SssI. Confirming previous results we showed that M.SssI can deaminate cytosine to uracil in a slow reaction in the absence of SAM and that the rate of this reaction can be increased by the SAM analogue 5’-amino-5’-deoxyadenosine. We could not detect M.SssI-catalyzed deamination of C5-methylcytosine (m5C). We found conditions where the rate of M.SssI mediated C-to-U deamination was at least 100-fold higher than the rate of m5C-to-T conversion. Although this difference in reactivities suggests that the enzyme could be used to identify C5-methylated cytosines in the epigenetically important CG dinucleotides, the rate of M.SssI mediated cytosine deamination is too low to become an enzymatic alternative to the bisulfite reaction. Amino acid replacements in the presumed SAM binding pocket of M.SssI (F17S and G19D) resulted in greatly reduced methyltransferase activity. The G19D variant showed cytosine deaminase activity in E. coli, at physiological SAM concentrations. Interestingly, the C-to-U deaminase activity was also detectable in an E. coli ung+ host proficient in uracil excision repair

    Alternative Mechanisms for Tn5 Transposition

    Get PDF
    Bacterial transposons are known to move to new genomic sites using either a replicative or a conservative mechanism. The behavior of transposon Tn5 is anomalous. In vitro studies indicate that it uses a conservative mechanism while in vivo results point to a replicative mechanism. To explain this anomaly, a model is presented in which the two mechanisms are not independent—as widely believed—but could represent alternate outcomes of a common transpositional pathway
    corecore